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Abstract High Dimensional Model Representation (HDMR) is a general set of quan-
titative model assessment and analysis tools for systems with many variables. A gen-
eral formulation for the HDMR component functions with independent and correlated
variables was obtained previously. Since the HDMR component functions generally
are coupled to one another and involve multi-dimensional integrals, explicit formu-
las for the component functions are not available for an arbitrary function with an
arbitrary probability distribution amongst their variables. This paper presents analyt-
ical formulas for the HDMR component functions and the corresponding sensitivity
indexes for the common case of a function expressed as a quadratic polynomial with
a multivariate normal distribution over its variables. This advance is important for
practical applications of HDMR with correlated variables.

Keywords HDMR · Correlated variables · Sensitivity analysis

1 Introduction

Many problems in science and engineering reduce to the need for efficiently construct-
ing a map of the relationship between a set of high dimensional system inputs x and the
system output f (x). Let (Rn,B(Rn), μ) be a probability space, where R

n is a sample
space, B(Rn) denotes the the Borel σ -algebra on R

n , and μ is a probability measure
with dμ = p(x)dx where p(x) is the probability density function (pdf). Suppose f (x)
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is a real square integrable function of a random vector x ∈ R
n . As the contributions

of the multiple input variables upon the output can be independent and cooperative, it
is natural to express f (x) as a finite hierarchical expansion:

f (x) =
∑

u⊆n

fu(xu). (1.1)

Here we use the following multi-index notation. Given the subset u ⊆ {1, 2, . . . , n},
we denote by xu those variables in x whose indexes are in u, and x−u denotes the
subset of variables in x with indexes not in u. Note that the empty set ∅ is a subset
of {1, 2, . . . , n} and we have f∅ = f0, a constant. We will also write u ⊆ n in place
of u ⊆ {1, 2, . . . , n} for simplicity. Decomposition in Eq. 1.1 was first introduced by
Fisher [1] and is known as the ANOVA decomposition, which was also employed for
studying U(unbiased)-statistics by Hoeffding [2].

Sobol introduced the vanishing condition for the component functions in the
ANOVA decomposition [3–5]

∫

K1

fu(xu)dxi = 0, i ∈ u, ∅ �= u ⊆ n (1.2)

for K
n being an n-dimensional hypercube [0, 1]n . This condition uniquely defines the

component functions as

fu(xu) =
∫

Kn−|u|

f (x)dx−u −
∑

v⊂u

fv(xv), u ⊆ n, (1.3)

where |u| denotes the cardinality of u, which are mutually orthogonal

E[ fu(xu) fv(xv)] = 0, u �= v, (1.4)

where E[·] denotes the expectation. Since ∅ ⊂ n, we have

E[ fu(xu) f0] = f0E[ fu(xu)] = 0, u �= ∅. (1.5)

Equation 1.5 is valid for an arbitrary function f (x) and an arbitrary probability distri-
bution and hence f0 may be or may not be zero. Therefore, Eq. 1.5 is valid if and only
if

E[ fu(xu)] = 0, u �= ∅, (1.6)

i.e., the expected value of any non-constant component function is zero. Equation 1.6
also implies that the expected value of f (x) is f0.

E[ f (x)] = E

[
∑

u⊆n

fu(xu)

]
= E[ f0] = f0. (1.7)

Combining the mutual orthogonality and zero expectation of the non-constant com-
ponent functions directly leads to the decomposition of the variance of f (x)
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Var( f (x)) = E

[
( f (x) − f0)

2
]

=
∑

∅�=u⊆n

E

[
fu(xu)2

]
=
∑

∅�=u⊆n

Var( fu(xu)) (1.8)

and the definition of sensitivity indexes

1 =
∑

∅�=u⊆n

Var( fu(xu))

Var( f (x))
=
∑

∅�=u⊆n

Su (1.9)

which establishes the theoretical basis for the variance-based method of sensitivity
analysis [6–13].

Rabitz and Alis [14] extended Sobol’s formulas to any product type measure

dμ =
n∏

i=1

dμi =
n∏

i=1

pi (xi )dxi (1.10)

and used the generalized vanishing condition

∫

K1

fu(xu)dμi =
∫

K1

fu(xu)pi (xi )dxi = 0, i ∈ u (1.11)

to obtain

fu(xu) =
∫

Kn−|u|

f (x)p−u(x−u)dx−u −
∑

v⊂u

fv(xv), u ⊆ n, (1.12)

where p−u(x−u) =∏i �∈u pi (xi ) is the marginal pdf for x−u . This definition includes
Sobol’s formulas as a special case for pi (xi ) = 1,∀i . As the formula of fu(xu) given
in Eq. 1.12 only contains lower order component functions fv(xv), v ⊂ u, all the
component functions can be obtained sequentially starting from f0.

The extension to an arbitrary product measure makes it possible to generate various
alternative forms for the component functions. Rabitz and Alis denoted Eq. 1.1 with
component functions defined by Eq. 1.12 as High Dimensional Model Representation
(HDMR), and called the HDMR with all pi (xi ) = 1 as ANOVA-HDMR. Another
type of HDMR referred to as cut-HDMR was constructed for

dμ =
n∏

i=1

δ(xi − x̄i )dxi (1.13)

where δ is the Dirac delta function, x̄ = (x̄1, x̄2, . . . , x̄n) is a chosen reference point
in x space. The component functions of cut-HDMR possess the form:

fu(xu) = f (xu, x̄−u) −
∑

v⊂u

fv(xv), u ⊆ n, (1.14)
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where (xu, x̄−u) denotes x with xi = x̄i for i �∈ u. The cut-HDMR component
functions are constructed as numerical data tables along lines, planes and other higher
dimensional subvolumns through the reference point x̄. Modified algorithms of cut-
HDMR to improve the accuracy and reduce the sample size were developed [15,
16]. Sobol [17] proved that cut-HDMR is actually an HDMR decomposition of the
difference f (x) − f (x̄), and referred to it as finite difference HDMR. Sobol [17] also
discussed the influence of the choice of the reference point x̄.

Alis and Rabitz [18] proposed to approximate the HDMR component functions
defined in Eq. 1.12 by a combination of linearly independent basis functions φuk(xu)

fu(xu) ≈
s∑

k=1

cukφuk(xu), ∅ �= u ⊆ n (1.15)

where cuk are constant combination coefficients, s is an integer, φuk(xu) are polyno-
mials, orthogonal bases, splines, etc. satisfying the conditions:

E[φuk(xu)] = 0, ∀k (1.16)∫

K1

φuk(xu)pi (xi )dxi = 0, i ∈ u. (1.17)

As a special case, φuk(xu) can be a product of one variable basis functions

φuk(xu) =
∏

i∈u

φiki (xi ). (1.18)

These basis functions may be either classical orthonormal polynomials with a given
measure μ or orthonormal polynomials constructed from the collected data following
an implicit probability distribution by Gram–Schmidt orthogonalization. The resultant
approximate HDMR component functions still satisfy the characteristic property of
HDMR component functions: zero expectation and mutual orthogonality. The advan-
tage of the basis function approximation is that using a single set of random samples
of x generated according to the product pdf, then all the component functions for a
truncated HDMR expansion can be obtained by regression to determine the combi-
nation coefficients cuk . This version of HDMR was denoted as Random Sampling
(RS)-HDMR [18–21].

The above work is based on the assumption that all the variables xi are independent.
In practice, very often the variables xi are correlated or dependent, i.e., the measure μ

is no longer of a product type. Thus, the theoretical basis and numerical algorithms of
HDMR developed above do not apply in this circumstance. The work of Hooker [22]
provides a foundation to deal with this problem by relaxing the vanishing condition,
Eq. 1.11 to

∫
fu(xu)p(x)dxi dx−u =

∫
fu(xu)pu(xu)dxi = 0, i ∈ u, ∅ �= u ⊆ n, (1.19)
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where pu(xu) is the marginal pdf for xu , under the condition that the support of p(x)

is grid closed. For the sake of notational simplicity, we omit the specific integration
dimension and range and use

∫
to represent all integrations. Equation 1.19 includes

the vanishing condition, and Eq. 1.11 as a special case for independent variables when

pu(xu) =
∏

i∈u

pi (xi ). (1.20)

The criterion, Eq. 1.19, is equivalent to the hierarchical orthogonality condition of the
HDMR component functions

E[ fu(xu) fv(xv)] = 0, v ⊂ u, (1.21)

i.e., a component function is only required to be orthogonal to all nested lower order
component functions whose variables are a subset of its variables. Hooker proved that
under the relaxed vanishing condition, or equivalently the hierarchical orthogonality
condition, the HDMR component functions are unique.

Based on the relaxed vanishing condition, Li and Rabitz [23] deduced the general
formulas for HDMR component functions for independent and correlated variables as

f0 =
∫

f (x)p(x)dx, (1.22)

fi (xi ) =
∫

f (x)p−i (x−i )dx−i − f0 −
∑

{i}⊂v⊆n

∫
fv(xv)p−i (x−i )dx−i , (1.23)

fi j (xi , x j ) =
∫

f (x)p−i j (x−i j )dx−i j − f0 − fi (xi ) − f j (x j )

−
∑

v⊆n
{i, j}⋂ v �=∅

∫
fv(xv)p−i j (x−i j )dx−i j , (1.24)

. . .

or in a single formula [24],

fu(xu) =
∫

f (x)p−u(x−u)dx−u −
∑

v⊂u

fv(xv)

−
∑

u �⊇v⊆n
u
⋂

v �=∅

∫
fv(xv)p−u(x−u)dx−u, u ⊆ n. (1.25)

For independent variables the last term vanishes, and Eq. 1.25 reduces to Eq. 1.12.
Using the hierarchical orthogonality condition, the last term of Eq. 1.25 can be

re-expressed leading to [24]

fu(xu) =
∫

f (x)p−u(x−u)dx−u −
∑

v⊂u

fv(xv)
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−
∑

u �⊇v⊆n
u
⋂

v �=∅

∫
fv(xv)pv∩−u(xv∩−u)dxv∩−u, u ⊆ n. (1.26)

As shown later, we do not need to directly calculate the last term. Thus, for brevity,
we will use Eq. 1.25.

Equation 1.25 implies that for correlated variables all the component functions are
coupled together. The explicit form of each component function may not be obtained
separately for an arbitrary function f (x) and an arbitrary measure μ, although Li and
Rabitz [23,25] and Li et al. [26] developed a numerical method to determine the HDMR
component functions. They suggested to approximate the HDMR component functions
as expansions for a set of suitable basis functions, and then use D-MORPH regression to
determine the expansion coefficients such that the hierarchically orthogonal condition
for the component functions is satisfied.

Since the HDMR component functions with correlated variables are not mutually
orthogonal, the standard variance decomposition of the total output variance does
not hold, and the variance-based sensitivity analysis is not valid as well for cor-
related variables. However, based on a covariance decomposition, a general global
sensitivity analysis for independent and correlated variables, referred as structural
(independent) and correlative sensitivity analysis (SCSA) was proposed by Li et al.
[27]

Var( f (x)) = E

[
( f (x) − f0)

2
]

= E

[
( f (x) − f0)

∑

∅�=u⊆n

fu(xu)
]

=
∑

∅�=u⊆n

E [( f (x) − f0)( fu(xu) − 0)] =
∑

∅�=u⊆n

Cov ( f (x), fu(xu))

=
∑

∅�=u⊆n

Cov
(

f (x) − fu
(
xu
)+ fu(xu), fu(xu)

)

=
∑

∅�=u⊆n

[
Var
(

fu(xu)
)+ Cov

(
f (x) − fu(xu), fu(xu)

)]

=
∑

∅�=u⊆n

[
Var( fu(xu)) + Cov

( ∑

u �=v⊆n

fv(xv), fu
(
xu
))]

. (1.27)

The general sensitivity indexes are defined by dividing both sides of Eq. 1.27 with
Var( f (x)).

1 =
∑

∅�=u⊆n

⎡

⎣Var ( fu(xu))

Var ( f (x))
+

Cov
(∑

u �=v⊆n fv(xv), fu(xu)
)

Var ( f (x))

⎤

⎦

=
∑

∅�=u⊆n

[Sa
u + Sb

u ] =
∑

∅�=u⊆n

Su, (1.28)
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where Sa
u , Sb

u and Su are respectively referred to as structural (independent), cor-
relative and total sensitivity indexes for xu . For independent variables, all of the
component functions are mutually orthogonal, i.e, their covariances are all zero. Then
Sb

u = 0, and the three sensitivity indexes Sa
u , Sb

u and Su reduce to a single index Su

utilizing the definition in Eq. 1.9 given by the variance-based method of sensitivity
analysis.

The fact that explicit formulas for the HDMR component functions cannot be
obtained for an arbitrary function with an arbitrary probability distribution over the
variables increases the effort of applying HDMR in some practical applications. How-
ever, many systems are exactly described or satisfactorily approximated by quadratic
polynomial functions f (x), and the probability distribution over the variables is com-
monly considered to be a multivariate normal distribution. This paper presents ana-
lytical formulas for such HDMR component functions and the sensitivity indexes
based on these HDMR component functions, which significantly reduces the com-
putational effort in this class of practical applications of HDMR with correlated
variables.

The remainder of the paper is organized as follows. The formulas for the HDMR
component functions and their corresponding SCSA sensitivity indexes for quadratic
functions are given in Sect. 2. The formulas for linear polynomials are included as
a special case. Section 3 gives two illustrative examples. Finally, some concluding
remarks are given in Sect. 4. The details of the mathematical derivations are given in
the supplemental material.

2 A quadratic polynomial function with a multivariate normal distribution

A quadratic polynomial function with a multivariate normal distribution over its
variables is commonly used in many practical circumstances. However, the construc-
tion of its HDMR component functions and the determination of the correspond-
ing sensitivity indexes are computationally demanding tasks [28–31]. The analyti-
cal formulas for the HDMR component functions and the corresponding sensitiv-
ity indexes provided here not only significantly reduce the computational effort,
but also provide clear deterministic and statistic interpretations for the sensitivity
indexes.

Suppose that for x = (x1, x2, . . . , xn)

y = f (x) = α0 +
n∑

i=1

αi xi +
n∑

i, j=1
i �= j

βi j xi x j +
n∑

i=1

γi x2
i (2.1)

with βi j = β j i , and x possesses a multivariate normal distribution

p(x) = 1

(2π)n/2 | 	 |1/2 exp

(
−1

2
(x − μ)T 	−1(x − μ)

)
, (2.2)
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where μ = (μ1, μ2, . . . , μn) is the expected value of x, 	 is the covariance matrix
of x

	 =

⎡

⎢⎢⎢⎣

σ 2
1 σ12 · · · σ1n

σ21 σ 2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ 2
n

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

σ 2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ2σ1 σ 2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 ρn2σnσ2 · · · σ 2
n

⎤

⎥⎥⎥⎦ (2.3)

with
σi j = σ j i , ρi j = ρ j i . (2.4)

For each xi and each pair (xi , x j ), their marginal distributions are also normal, i.e.,

pi (xi ) = 1

σi
√

2π
exp

[
−1

2

(
xi − μi

σi

)2
]

, (2.5)

pi j
(
xi , x j

) = 1

2πσiσ j

√
1 − ρ2

i j

exp

[
− 1

2(1 − ρ2
i j )

((
xi − μi

σi

)2

−2ρi j

(
xi − μi

σi

)(
x j − μ j

σ j

)
+
(

x j − μ j

σ j

)2
)]

. (2.6)

To facilitate the treatment, all variables are first set to lie in the same range by
transforming xi to the canonical variable

zi = xi − μi

σi
, (i = 1, 2, . . . , n) (2.7)

with zero mean and unit standard deviation. This transformation is similar to the
transformation

zi = xi − ai

bi − ai
(2.8)

for xi with a uniform distribution, where ai and bi are lower and upper bounds of xi

such that all zi ’s have the same range [0,1].
With new variables zi , Eq. 2.1 becomes

y = f (z) = a0 +
n∑

i=1

ai zi +
n∑

i, j=1
i �= j

ai j zi z j +
n∑

i=1

bi z
2
i (2.9)
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where

a0 = α0 +
n∑

i=1

αiμi +
n∑

i, j=1
i �= j

βi jμiμ j +
n∑

i=1

γiμ
2
i , (2.10)

ai = αiσi +
n∑

k=1
k �=i

2βikμkσi + 2γiμiσi , (2.11)

ai j = a ji = βi jσiσ j , (2.12)

bi = γiσ
2
i . (2.13)

The pdf p(z) for z is the standard multivariate normal distribution

p(z) = 1

(2π)n/2 | 	 |1/2 exp

(
−1

2
zT 	−1z

)
, (2.14)

with μ = 0 and

	 =

⎡

⎢⎢⎢⎣

1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · 1

⎤

⎥⎥⎥⎦ . (2.15)

2.1 Analytical formulas for the HDMR component functions

For a quadratic polynomial function with a multivariate normal distribution of z, the
HDMR expansion only contains the terms f0, fi (xi ) and fi j (xi , x j ). The analytical
formulas will be given below, and in the supplemental material with further details.

1. Formula for f0

f0 =
∫

f (z)p(z)dz = a0 +
n∑

i, j=1
i �= j

ai jρi j +
n∑

i=1

bi . (2.16)

2. Analytical formulas for fi(zi) and fij(zi, zj)

For correlated variables, fi (zi ) and fi j (zi , z j ) are defined as

fi (zi ) =
∫

f (z)p−i (z−i )dz−i − f0 − hi (zi ), (2.17)

fi j (zi , z j ) =
∫

f (z)p−i j (z−i j )dz−i j − f0− fi (zi )− f j (z j )−hi j (zi , z j ), (2.18)

where hi (zi ), hi j (zi , z j ) denote the last terms in Eqs. 1.23, 1.24. Expressing the func-
tions hi (zi ), h j (z j ) and hi j (zi , z j ) as polynomials up to degree 2 (this is reasonable
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because f (z) is a polynomial function of that degree):

hi (zi ) = e2z2
i + e1zi + e0, (2.19)

h j (z j ) = e′
2z2

j + e′
1z j + e′

0, (2.20)

hi j (zi , z j ) = e′′
2i z

2
i + e′′

i j zi z j + e′′
2 j z

2
j + e′′

1i zi + e′′
1 j z j + e′′

0 , (2.21)

and applying the relaxed vanishing condition to fi (zi ), f j (z j ) and fi j (zi , z j ) yields
(see supplemental material)

hi (zi ) = −
n∑

k=1
k �=i

2aikρik

1 + ρ2
ik

z2
i −

n∑

k=1
k �=i

2aikρ
3
ik

1 + ρ2
ik

, ∀i, (2.22)

hi j (zi , z j ) = −
n∑

k=1
k �=i, j

2aikρik

1 + ρ2
ik

z2
i −

n∑

k=1
k �=i, j

2a jkρ jk

1 + ρ2
jk

z2
j

−
n∑

k=1
k �=i, j

2aikρ
3
ik

1 + ρ2
ik

−
n∑

k=1
k �=i, j

2a jkρ
3
jk

1 + ρ2
jk

. (2.23)

Substituting Eqs. 2.22, 2.23 into Eqs. 2.17, 2.18 we obtain

fi (zi ) =

⎛

⎜⎜⎝bi +
n∑

k=1
k �=i

2aikρik

1 + ρ2
ik

⎞

⎟⎟⎠ z2
i + ai zi −

⎛

⎜⎜⎝bi +
n∑

k=1
k �=i

2aikρik

1 + ρ2
ik

⎞

⎟⎟⎠ , (2.24)

fi j
(
zi , z j

) = 2ai j zi z j − 2ai jρi j

1 + ρ2
i j

(
z2

i + z2
j

)
− 2ai jρi j

ρ2
i j − 1

1 + ρ2
i j

. (2.25)

The formulas for f0, fi (zi ) and fi j (zi , z j ) have clear meaning as explained below.

• Since the zi variables are correlated, the variation of zi causes a variation of zk

through the correlation coefficient ρik . This results in the term aik zi zk having a
contribution as the quadratic form

2aikρik

1 + ρ2
ik

z2
i , (k = 1, 2, . . . , n; k �= i). (2.26)

Thus, the structural (independent) contribution of zi reflected by fi (zi ) not only
contains ai zi and bi z2

i in f (z), but also contains an extra term given by the sum
of Eq. 2.26 over k.

• To assure that fi (zi ) and fi j (zi , z j ) are hierarchically orthogonal, the contribution
above is subtracted off in fi j (zi , z j ).
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• Equations 2.24, 2.25 can be rewritten in a more transparent form:

fi (zi ) =

⎛

⎜⎜⎝bi +
n∑

k=1
k �=i

2aikρik

1 + ρ2
ik

⎞

⎟⎟⎠ z2
i + ai zi −

⎛

⎜⎜⎝bi +
n∑

k=1
k �=i

2aikρik

1 + ρ2
ik

⎞

⎟⎟⎠

= (ai zi − 0) +
n∑

k=1
k �=i

[(
bi + 2aikρik

1 + ρ2
ik

)
z2

i −
(

bi + 2aikρik

1 + ρ2
ik

)]

= [ai zi − E(ai zi )] +
n∑

k=1
k �=i

[(
bi + 2aikρik

1 + ρ2
ik

)
z2

i

−E

((
bi + 2aikρik

1 + ρ2
ik

)
z2

i

)]
(2.27)

and

fi j
(
zi , z j

) = 2ai j zi z j − 2ai jρi j

1 + ρ2
i j

(
z2

i + z2
j

)
− 2ai jρi j

ρ2
i j − 1

1 + ρ2
i j

= (2ai j zi z j − 2ai jρi j
)−

(
2ai jρi j

1 + ρ2
i j

(
z2

i + z2
j

)
− 4ai jρi j

1 + ρ2
i j

)

= [2ai j zi z j − E
(
2ai j zi z j

)]

−
[

2ai jρi j

1 + ρ2
i j

(
z2

i + z2
j

)
− E

(
2ai jρi j

1 + ρ2
i j

(
z2

i + z2
j

))]
. (2.28)

Here the relation

2ai jρi j = 2ai jρi j

1 + ρ2
i j

(
1 + ρ2

i j

)
= 2ai jρi j

1 + ρ2
i j

(
2 + ρ2

i j − 1
)

= 4ai jρi j

1 + ρ2
i j

+ 2ai jρi j

1 + ρ2
i j

(
ρ2

i j − 1
)

(2.29)

was used.
Taking the expected values of fi (zi ) and fi j (zi , z j ) from Eqs. 2.27, 2.28 yields

E( fi (zi )) = E( fi j (zi , z j )) = 0, (2.30)

consistent with the expected value of a HDMR component function being zero.
• The resultant terms f0, fi (zi ) and fi j (zi , z j ) satisfy the relaxed vanishing con-

dition and are hierarchically orthogonal. Direct calculation can prove that the
sum of f0 and all fi (zi ) and all fi j (zi , z j ) is exactly equal to f (z), i.e.,
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f0, fi (zi ), fi j (zi , z j ) is a repartition of f (z), and it is a unique decomposition
of f (z) under the hierarchical orthogonality condition (see supplemental mater-
ial). Thus, the quadratic polynomial function, Eq. 2.3, may be rewritten as

y = f (z) ≡ f0 +
n∑

i=1

fi (zi ) +
∑

1≤i< j≤n

fi j (zi , z j ). (2.31)

• When all zi ’s are independent, i.e., ρi j = 0 for all (i, j), Eqs. 2.16, 2.24, 2.25
reduce to

f0 = a0 +
n∑

i=1

bi , (2.32)

fi (zi ) = bi z
2
i + ai zi − bi , (2.33)

fi j (zi , z j ) = 2ai j zi z j . (2.34)

2.2 Analytical formulas of SCSA sensitivity indexes

According to SCSA, the structural (independent), correlative and total sensitivity
indexes Sa, Sb, S are specified as

Sa
i = Var( fi (zi ))/Var(y), (2.35)

Sb
i = Cov( fi (zi ), y − fi (zi ))/Var(y), (2.36)

Si = Cov( fi (zi ), y)/Var(y), (2.37)

Sa
i j = Var( fi j (zi , z j ))/Var(y), (2.38)

Sb
i j = Cov( fi j (zi , z j ), y − fi j (zi , z j ))/Var(y), (2.39)

Si j = Cov( fi j (zi , z j ), y)/Var(y). (2.40)

To obtain Sa
i , Sb

i , Si and Sa
i j , Sb

i j , Si j we need to determine the variances and covari-
ances.

Let

ci = bi +
n∑

k=1
k �=i

2aikρik

1 + ρ2
ik

, (2.41)

pi j = 2ai jρi j

1 + ρ2
i j

, (2.42)

qi j = 2ai jρi j
ρ2

i j − 1

1 + ρ2
i j

. (2.43)
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Then we have

fi (zi ) = ci z
2
i + ai zi − ci , (2.44)

fi j (zi , z j ) = 2ai j zi z j − pi j

(
z2

i + z2
j

)
− qi j . (2.45)

The resultant variances and covariances are given here (see the supplemental material
for further details).

Var ( fi (zi )) = a2
i + 2c2

i , (2.46)

Var
(

fi j (zi , z j )
) = 4a2

i j − 4p2
i j + q2

i j , (2.47)

Cov ( fi (zi ), y − fi (zi )) =
n∑

k=1
k �=i

(
ai akρik + 2ci ckρ

2
ik

)

+
n∑

k,l=1,k �=l
k,l �=i

[
2aklciρikρil − pklci

(
ρ2

ik + ρ2
il

)]
, (2.48)

Cov
(

fi j
(
zi , z j

)
, y − fi j

(
zi , z j

)) =
n∑

k=1,
k �=i, j

[
4ai j ckρikρ jk − 2pi j ck

(
ρ2

ik + ρ2
jk

)]

+
n∑

k=1
k �=i, j

[
4ai j (aikρ jk + a jkρik) − 4ai j (pik + p jk)ρikρ jk

−4pi jρi j (aikρ jk + a jkρik) + 2pi j
(

pik + p jk
) (

ρ2
i j + ρ2

ik + ρ2
jk − 1

)

+qi j (qik + q jk)
]

+
n∑

k,l=1,k �=l
k,l �=i, j

[
2ai j akl

(
ρikρ jl + ρilρ jk

)− 2ai j pkl
(
ρikρ jk + ρilρ jl

)

−2akl pi j
(
ρikρil + ρ jkρ jl

)+ pi j pkl

(
ρ2

ik + ρ2
jk + ρ2

il + ρ2
jl

)]
. (2.49)

To determine Var(y), we set

aii = bi , ρi i = 1. (2.50)

Var(y) = Var

[
a0 +

n∑

i=1

ai zi +
n∑

i, j=1
i �= j

ai j zi z j +
n∑

i=1

bi z
2
i

]

= Var

[
a0 +

n∑

i=1

ai zi +
n∑

i, j=1

ai j zi z j

]
= Var

[ n∑

i=1

ai zi +
n∑

i, j=1

ai j zi z j

]
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= Var
( n∑

i=1

ai zi

)
+ Var

( n∑

i, j=1

ai j zi z j

)
+ 2Cov

( n∑

i=1

ai zi ,

n∑

i, j=1

ai j zi z j

)

= Var
( n∑

i=1

ai zi

)
+ Var

( n∑

i, j=1

ai j zi z j

)
= Var

( n∑

i=1

ai zi

)
+ Var

(
zT Az

)

= Var
( n∑

i=1

ai zi

)
+ 2 tr

(
A	 A	

)

= Var
( n∑

i=1

ai zi

)
+ 2

n∑

i=1

n∑

j=1

( n∑

k=1

aikρ jk

)( n∑

l=1

a jlρil

)

=
n∑

i=1

a2
i +

n∑

i, j=1
i �= j

ai a jρi j +
n∑

i, j=1

n∑

k,l=1

2aika jlρ jkρil . (2.51)

Here three conditions were used: 1) the variance for a quadratic function zT Az [32] is

Var(zT Az) = 2 tr(A	 A	) + 4μT A	 Aμ = 2 tr(A	 A	) (2.52)

with A = (ai j ), 2) 	 is given in Eq. 2.15, and 3) μ = 0.
The analytical formulas for the variances and covariances show that

• Var( fi (zi )) and Var( fi j (zi , z j )), and consequently Sa
i and Sa

i j , are only related to
the coefficients of fi (zi ) and fi j (zi , z j ). Since the formula of f (z) is the sum
of f0, fi (zi ) and fi j (zi , z j ), this implies that Sa

i and Sa
i j reflect the structural

(independent) contributions of zi and (zi , z j ) in f (z), and they are always non-
negative.

• Cov( fi (zi ), y − fi (zi )) and Cov( fi j (zi , z j ), y − fi j (zi , z j )), and consequently, Sb
i

and Sb
i j , are related to the products of coefficients arising from fi (zi ), fi j (zi , z j )

and the corresponding correlation coefficients ρi j ’s. Therefore, they reflect the
correlative contributions of zi , (zi , z j ) with their correlated variables zk’s whose
correlation coefficients ρik, ρ jk are not zero. They can be positive or negative.

• Since

Cov( fi (zi ), y) = Var( fi (zi )) + Cov( fi (zi ), y − fi (zi ))

and

Cov( fi j (zi , z j ), y) = Var( fi j (zi , z j )) + Cov( fi j (zi , z j ), y − fi j (zi , z j )),

we have

Si = Sa
i + Sb

i ,

Si j = Sa
i j + Sb

i j , (2.53)
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which can be positive or negative.
• Due to

n∑

i=1

Cov( fi (zi ), y) +
∑

1≤i< j≤n

Cov( fi j (zi , z j ), y)

= Cov

⎛

⎝
n∑

i=1

fi (zi ) +
∑

1≤i< j≤n

fi j (zi , z j ), y

⎞

⎠

= Cov

⎛

⎝ f0 +
n∑

i=1

fi (zi ) +
∑

1≤i< j≤n

fi j (zi , z j ), y

⎞

⎠

= Var(y), (2.54)

we have

1 ≡
n∑

i=1

Cov( fi (zi ), y)

Var(y)
+

∑

1≤i< j≤n

Cov( fi j (zi , z j ), y)

Var(y)

=
n∑

i=1

Si +
∑

1≤i< j≤n

Si j . (2.55)

When the parameters α0, αi , βi j , γi and σi , ρi j are determined from experimental
data, some errors may occur due to the data error and the finite number of samples.
In this case, the above relations can be used to evaluate the reliability of the SCSA.

• When all zi ’s are independent, then all ρi j = 0(i �= j). In this case Cov( fi (zi ), y−
fi (zi )) and Cov( fi j (zi , z j ), y− fi j (zi , z j )) and consequently, Sb

i and Sb
i j all vanish

because each term of Cov( fi (zi ), y − fi (zi )) and Cov( fi j (zi , z j ), y − fi j (zi , z j ))
contains one or more ρi j (i �= j).

• All the statistical parameters μi , σi and ρi j , and polynomial model parameters
α0, αi , βi j , γi can be easily estimated from a given set of input-output (x, f (x))
data. Using the above formulas, the SCSA sensitivity indexes may be readily
obtained.

2.3 Special case: linear polynomials

As a special case of the quadratic polynomial function, the linear polynomial function
can be obtained by setting βi j = γi = 0 in Eq. 2.1

y = f (x) = α0 +
n∑

i=1

αi xi . (2.56)
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With new variables zi , Eq. 2.56 becomes

y = f (z) = a0 +
n∑

i=1

ai zi (2.57)

where

a0 = α0 +
n∑

i=1

αiμi , (2.58)

ai = αiσi , ∀i. (2.59)

Since there are only zeroth and first order HDMR component functions for a linear
polynomial function, its HDMR expansion for f (z) is

f (z) = f0 +
n∑

i=1

fi (zi ) = a0 +
n∑

i=1

ai zi , (2.60)

where

f0 = a0, (2.61)

fi (zi ) = ai zi , ∀i. (2.62)

obtained from Eqs. 2.16 and 2.24 by setting ai j = aik = bi = 0.
Similarly, from Eqs. 2.46, 2.48, 2.51, with ci = ck = akl = pkl = 0 we have

Var( fi (zi )) = a2
i , (2.63)

{Cov( fi (zi ), y − fi (zi )) =
n∑

j=1
j �=i

ai a jρi j . (2.64)

Cov( fi (zi ), y) = a2
i +

n∑

j=1
j �=i

ai a jρi j , (2.65)

Var(y) =
n∑

i=1

a2
i +

n∑

i, j=1
i �= j

ai a jρi j = aT 	a. (2.66)

Then we obtain

Sa
i = a2

i /aT 	a, (2.67)

Sb
i =

n∑

j=1
j �=i

ai a jρi j/aT 	a, (2.68)
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Si = Sa
i + Sb

i . (2.69)

Equations 2.67–2.69 show that:

• Sa
i is only proportional to a2

i associated with zi in the formula of f (z), Eq. 2.60,
i.e., it reflects the structural contribution of zi in f (z) to the variance of y. For
the original variable xi , since a2

i = α2
i σ 2

i , Sa
i is only proportional to the square of

coefficient α2
i in Eq. 2.56 and the variance of the xi ’s marginal distribution. Thus,

Sa
i represents the independent contribution of xi to the output y’s variation, and is

always non-negative.
• Sb

i is proportional to the sum of covariances of zi with other z j ’s, i.e., it reflects
the correlative contribution of zi with other correlated z j ’s whose ρi j �= 0. The
covariance of zi and z j is propositional to ai a j and their correlation coefficient
ρi j , and can be positive or negative depending on the sign of ai , a j and ρi j .
A similar interpretation may be obtained for the original variables xi and x j .

• Si = Sa
i + Sb

i gives the total contribution of zi to the variance of y, which can be
also positive or negative.

• ∑i Si ≡ 1 and can be used to evaluate the reliability of SCSA.
• For a given set of input-output (x, f (x)) data, all the statistical parameters μi , σi

and ρi j can be easily estimated, and the polynomial model parameters α0, αi can
be obtained by linear regression. Using the formulas above, the SCSA sensitivity
indexes may be readily calculated.

3 Illustrative cases

Two examples are used for illustration.

3.1 A linear polynomial

Consider an example [30]

y = f (x) = x1 + x2 + x3 (3.1)

with μi = 0 for all i and the covariance matrix

	 =
⎡

⎣
1 0 0
0 1 σρ

0 σρ σ 2

⎤

⎦ . (3.2)

Since all αi = 1, σ1 = σ2 = 1 and only σ3 = σ , to transform xi to the standard
variable zi we only need to set

ai = αi = 1, (i = 1, 2) (3.3)

a3 = α3σ3 = σ, (3.4)
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Table 1 The analytical form of sensitivity indexes

Input SCSA Variance-based method

Sa
i Sb

i Si Si

x1
1

2+σ2+2σρ
0 1

2+σ2+2σρ

1
2+σ2+2σρ

x2
1

2+σ2+2σρ

σρ

2+σ2+2σρ

1+σρ

2+σ2+2σρ

(1+σρ)2

2+σ2+2σρ

x3
σ2

2+σ2+2σρ

σρ

2+σ2+2σρ

σ2+σρ

2+σ2+2σρ

(σ+ρ)2

2+σ2+2σρ

Sum 2+σ2

2+σ2+2σρ

2σρ

2+σ2+2σρ
1 1 + 2σρ+ρ2+σ2ρ2

2+σ2+2σρ

and

	 =
⎡

⎣
1 0 0
0 1 ρ

0 ρ 1

⎤

⎦ . (3.5)

Then using Eqs. 2.67–2.69 all Sa
i , Sb

i , Si can be obtained. The resultant sensitivity
indexes are given in Table 1. For comparison, the results obtained by variance-based
method [30,31] are also listed. Note that

Var(y) = aT 	a = 2 + σ 2 + 2σρ. (3.6)

Comparing the results given by SCSA and the variance-based method we may draw
the following conclusions

• SCSA separates the structural (independent) and correlative contributions of inputs
and provides a clear understanding for the various contributions of the input vari-
ance to the output variance, and the resultant sensitivity indexes are easy to inter-
pret.

• The variance-based method mixes up the structural (independent) and correlative
contributions of the input variables. Thus, from the resultant variance-based sen-
sitivity indexes it is difficult to determine whether the influence comes from the
particular variable or correlation with other input variables. This situation makes it
difficult to determine the importance order of the input variables upon comparison
of the sensitivity index magnitudes.

• The sum of Si given by the SCSA method is exactly equal to 1.0, but the sum of Si

obtained from the variance-based method can be larger or smaller than 1.0 which
makes it difficult to judge the reliability of the sensitivity analysis.

3.2 A quadratic polynomial

A three variable quadratic polynomial is used as an example for illustration:

f (x) = g1(x1, x2) + g2(x2) + g3(x3), (3.7)

123



2070 J Math Chem (2014) 52:2052–2073

where

g1(x1, x2) = g1a(x1)g1b(x2)

= [a1(x1 − μ1) + a0][b1(x2 − μ2) + b0], (3.8)

g2(x2) = c2(x2 − μ2)
2 + c1(x2 − μ2) + c0, (3.9)

g3(x3) = d2(x3 − μ3)
2 + d1(x3 − μ3) + d0 (3.10)

with a multivariate normal distribution

p(x) = 1

(2π)3/2|	|1/2 exp

(
−1

2
(x − μ)T 	−1(x − μ)

)
, (3.11)

where μ = (μ1, μ2, μ3) is the expected value of x, 	 is the covariance matrix of x

	 =
⎡

⎣
σ 2

1 ρ12σ1σ2 0
ρ12σ1σ2 σ 2

2 0
0 0 σ 2

3

⎤

⎦ , (3.12)

i.e., x1 and x2 are correlated, but x3 is independent. After expansion, Eq. 3.7 becomes

f (x) = a0b0 + c0 + d0 + a1b0(x1 − μ1) + (a0b1 + c1)(x2 − μ2)

+d1(x3 − μ3) + a1b1(x1 − μ1)(x2 − μ2) + c2(x2 − μ2)
2

+d2(x3 − μ3)
2. (3.13)

3.3 Formulas for the HDMR component functions

First, the transformation

zi = xi − μi

σi
(3.14)

is performed which gives

f (z) = ā0 +
3∑

i=1

āi zi + 2ā12z1z2 +
3∑

i=2

b̄i z
2
i , (3.15)

where

ā0 = a0b0 + c0 + d0, (3.16)

ā1 = a1b0σ1, (3.17)

ā2 = (a0b1 + c1)σ2, (3.18)

ā3 = d1σ3, (3.19)

ā12 = a1b1σ1σ2/2, (3.20)

b̄2 = c2σ
2
2 , (3.21)
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b̄3 = d2σ
2
3 . (3.22)

Using Eqs. 2.16, 2.24–2.25, the HDMR component functions can be readily written
out for f (z) and then substituting the original parameters ai , bi , ai j and variables xi

gives

f0 = ā0 + 2ā12ρ12 + b̄2 + b̄3

= a1b1ρ12σ1σ2 + a0b0 + c2σ
2
2 + c0 + d2σ

2
3 + d0, (3.23)

f1(z1) = 2ā12ρ12

1 + ρ2
12

z2
1 + ā1z1 − 2ā12ρ12

1 + ρ2
12

= a1b1
σ2

σ1

ρ12

ρ2
12 + 1

(x1 − μ1)
2 + a1b0(x1 − μ1)

−a1b1σ1σ2
ρ12

ρ2
12 + 1

, (3.24)

f2(z2) =
(

b̄2 + 2ā12ρ12

1 + ρ2
12

)
z2

2 + ā2z2 − (b̄2 + 2ā12ρ12

1 + ρ2
12

)

=
[

a1b1
σ1

σ2

ρ12

ρ2
12 + 1

+ c2

]
(x2 − μ2)

2

+(a0b1 + c1)(x2 − μ2) − a1b1σ1σ2
ρ12

ρ2
12 + 1

− c2σ
2
2 , (3.25)

f3(z3) = b̄3z2
3 + ā3z3 − b̄3

= d2(x3 − μ3)
2 + d1(x3 − μ3) − d2σ

2
3 , (3.26)

f12(z1, z2) = 2ā12z1z2 − 2ā12ρ12

1 + ρ2
12

(z2
1 + z2

2) − 2ā12ρ12
ρ2

12 − 1

1 + ρ2
12

= −a1b1
σ2

σ1

ρ12

ρ2
12 + 1

(x1 − μ1)
2 + a1b1(x1 − μ1)(x2 − μ2)

−a1b1
σ1

σ2

ρ12

ρ2
12 + 1

(x2 − μ2)
2 − a1b1ρ12σ1σ2

ρ2
12 − 1

ρ2
12 + 1

, (3.27)

f13(z1, z3) = 0, (3.28)

f23(z2, z3) = 0. (3.29)

3.4 Formulas for the SCSA sensitivity indexes

Using Eqs. 2.46–2.51, the variances and covariances of the HDMR component func-
tions for f (z) given in Eq. 3.15 were obtained below.

Var( f1(z1)) = ā2
1 + 2

(
2ā12ρ12

1 + ρ2
12

)2

, (3.30)

123



2072 J Math Chem (2014) 52:2052–2073

Table 2 SCSA sensitivity indexes

ρ12 = 0.6 ρ12 = −0.6

Sa Sb S Sa Sb S

x1(z1) 0.2851 0.1714 0.4565 0.9531 −0.5496 0.4034

x2(z2) 0.3052 0.1714 0.4766 0.9227 −0.5496 0.3731

x3(z3) 0.0594 0.0000 0.0594 0.1985 0.0000 0.1985

x1, x2(z1, z2) 0.0075 0.0000 0.0075 0.0250 0.0000 0.0250

Sum 0.6572 0.3428 1.0000 2.0993 −1.0993 1.0000

Var( f2(z2)) = ā2
2 + 2

(
b̄2 + 2ā12ρ12

1 + ρ2
12

)2

, (3.31)

Var( f3(z3)) = ā2
3 + 2b̄2

3, (3.32)

Var( f12(z1, z2)) = 4ā2
12 − 4

(
2ā12ρ12

1 + ρ2
12

)2

+
(

2ā12ρ12(ρ
2
12 − 1)

1 + ρ2
12

)2

, (3.33)

Cov( f1(z1), y− f1(z1)) = ā1ā2ρ12+2

(
2ā12ρ12

1+ρ2
12

)(
b̄2+ 2ā12ρ12

1+ρ2
12

)
ρ2

12, (3.34)

Cov( f2(z2), y− f2(z2)) = ā1ā2ρ12+2

(
2ā12ρ12

1+ρ2
12

)(
b̄2+ 2ā12ρ12

1+ρ2
12

)
ρ2

12, (3.35)

Cov ( f12(z1, z2), y − f12(z1, z2)) = 0, (3.36)

Var(y) =
3∑

i=1

ā2
i +2

(
b̄2

2+b̄2
3

)
+2ā1ā2ρ12+4ā2

12

(
1+ρ2

12

)
+8b̄2ā12ρ12. (3.37)

The sensitivity indexes can be obtained from the ratio of variances and covariances to
the variance of y.

Setting σ1 = σ2 = 0.2, σ3 = 0.18 and ρ12 = 0.6(−0.6), and a0 = 1, a1 = 2, b0 =
2, b1 = 3, c0 = 3, c1 = 1, c2 = 2, d0 = 1, d1 = 2, d2 = 2, the resultant sensitivity
indexes are given in Table 2.

The sensitivity indexes given in Table 2 show that (1) Sa
i , Sa

i j are always non-

negative; (2) Sb
i , Sb

i j can be positive or negative depending on the sign of ai , bi , ai j

and ρi j ; (3) x3 is independent, so Sb
3 = 0; (4) f12(x1, x2) is hierarchically orthogonal

to f1(x1), f2(x2), and orthogonal to f3(x3)(x3 is independent), thus f12(x1, x2) is
orthogonal to all non-zero component functions, which makes Sb

12 = 0; (5) the sum
of all Si , Si j is exactly equal to unit.

4 Conclusions

A general formulation for the HDMR component functions with independent and
correlated variables has been obtained [23]. Global sensitivity analysis, SCSA, based
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on the general formulas of HDMR component functions has also been established.
In practice, many systems are exactly described or satisfactorily approximated by
quadratic polynomial functions, and the probability distribution of the variables are
commonly expressed as a multivariate normal distribution. This paper presented the
analytical formulas for the HDMR component functions and the corresponding SCSA
sensitivity indexes in the latter circumstances. These results should be valuable for
many practical applications of HDMR with correlated variables.
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